Achieving Differential Privacy Publishing of Location-Based Statistical Data Using Grid Clustering

نویسندگان

چکیده

Statistical partitioning and publishing is commonly used in location-based big data services to address queries such as the number of points interest, available vehicles, traffic flows, infected patients, etc., within a certain range. Adding noise perturbation statistical according differential privacy model can reduce various risks caused by location leakage while keeping characteristics published data. The traditional methods realize decomposition indexing 2D space from top bottom. However, they easily cause over-partitioning or under-partitioning phenomenon, therefore need multiple times scan. This paper proposes grid clustering protection method for scenarios. We implement statistics units equal-sized grids perform density classification on uniformly distributed discrete wavelet transform. A bottom-up algorithm designed blank uniform same level based neighborhood similarity. Laplacian incorporated into results form statistics. Experimental comparison real-world datasets manifests that proposed this superior other existing partition terms range querying accuracy operating efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Publishing Set-Valued Data via Differential Privacy

Set-valued data provides enormous opportunities for various data mining tasks. In this paper, we study the problem of publishing set-valued data for data mining tasks under the rigorous differential privacy model. All existing data publishing methods for set-valued data are based on partitionbased privacy models, for example k-anonymity, which are vulnerable to privacy attacks based on backgrou...

متن کامل

A Clustering Approach for Achieving Data Privacy

New privacy regulations together with everincreasing data availability and computational power have created a huge interest in data privacy research. One major research direction is built around k-anonymity property and its extensions, which are required for the released data. In this paper we present such an extension to k-anonymity, called psensitive k-anonymity, which solves some of the weak...

متن کامل

Privacy - Preserving Data Publishing

The success of data mining relies on the availability of high quality data. To ensure quality data mining, effective information sharing between organizations becomes a vital requirement in today's society. Since data mining often involves person-specific and sensitive information like medical records, the public has expressed a deep concern about their privacy. Privacy-preserving data publishi...

متن کامل

Differential Privacy Models for Location-Based Services

In this paper, we consider the adaptation of differential privacy to the context of locationbased services (LBSs), which personalize the information provided to a user based on his current position. Assuming that the LBS provider is queried with a perturbed version of the position of the user instead of his exact one, we rely on differential privacy to quantify the level of indistinguishability...

متن کامل

Achieving Privacy Preservation when Sharing Data for Clustering

In this paper, we address the problem of protecting the underlying attribute values when sharing data for clustering. The challenge is how to meet privacy requirements and guarantee valid clustering results as well. To achieve this dual goal, we propose a novel spatial data transformation method called Rotation-Based Transformation (RBT). The major features of our data transformation are: a) it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISPRS international journal of geo-information

سال: 2022

ISSN: ['2220-9964']

DOI: https://doi.org/10.3390/ijgi11070404